Synthesis and Structural Characterization of a Chiral Open-Framework Tin(II) Phosphate, $[CN_3H_6][Sn_4P_3O_{12}]$ (GUAN-SnPO)

S. Ayyappan,[†] X. Bu,[†] A. K. Cheetham,^{*,†} and C. N. R. Rao*,‡

Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India

Received August 6, 1998

Nanoporous materials are of considerable interest due to both their wide structural diversity and their potential applications in catalysis and other areas.¹ The development of chiral sieve structures is particularly attractive, since it offers the possibility of providing new routes for the manufacture of optically pure organic compounds. A small number of chiral zeolites are known, including the interesting case of zeolite β , which is an intergrowth of two polymorphic forms, one of which is chiral.² There have also been several recent successes in the open-framework phosphate area. Harrison et al.³ reported two closely related chiral sodium zincophosphates, NaZnPO₄·H₂O-I and -II, both prepared in the absence of chiral structure directing agents (SDA), and Stalder and Wilkinson⁴ used a chiral SDA to prepare a chiral gallophosphate. Zeolite-related cobalt(II) phosphates have also been reported.⁵ Recently, it has been established that tin(II) forms open-framework phosphate materials under hydrothermal conditions in the presence of organic amines and that these exhibit a wide range of novel architectures. For example, the tin(II) phosphates that have been isolated to date include a chain structure, (Sn₂(PO₄)(C₂O₄)_{0.5}),⁶ a layered structure, $([Sn_2(PO_4)_2]^2 - [C_2N_2H_{10}]^2 + H_2O)$,⁷ and several threedimensional extended networks ([Sn₄P₃O₁₂]^{-0.5-} [amine]²⁺).⁸⁻¹⁰ These compounds contain either trigonal pyramidal SnO₃ or square pyramidal SnO₄ units, vertex linked with tetrahedral PO₄ units to form the framework. In this paper, we report a study of both the enantiomorphs of a chiral open-framework SnPO structure. It is noteworthy that the title compound, GUAN-SnPO, was obtained from a synthesis with an achiral SDA, guanidine.

- [‡] Jawaharlal Nehru Centre for Advanced Scientific Research.
- (1) Thomas, J. M. Angew. Chem., Intl. Ed. Engl. 1994, 33, 913.
- (2) Newsam, J. M.; Treacy, M. M. J.; Koetsier, W. T.; de Gruyter, C. B. Proc. R. Soc. London A 1988, 420, 375.
- (3) Harrison, W. T. A.; Gier, T. E.; Stucky, G. D.; Broach, R. W.; Bedard, R. A. Chem. Mater. 1996, 8, 145.
- (4) Stalder, S. M.; Wilkinson, A. P. Chem. Mater. 1997, 9, 2168.
- (5) Feng, P.; Bu, X.; Tolbert, S. H.; Stucky, G. D. J. Am. Chem. Soc.
 1997, 119, 2497.
 - (6) Natarajan, S. J. Solid State Chem. 1998, in press.
- (7) Natarajan, S.; Cheetham, A. K. J. Solid State Chem. 1998, in press
- (8) Natarajan, S.; Attfield, M. P.; Cheetham, A. K. Angew. Chem., Int. Ed. Engl. **1997**, *36*, 978.
- (9) Natarajan, S.; Cheetham, A. K. J. Chem. Soc., Chem. Commun. **1997**, 1089.
- (10) Natarajan, S.; Cheetham, A. K. J. Solid State Chem. 1997, 134, 207

Figure 1. Asymmetric unit of GUAN-SnPO (thermal ellipsoids are given at 50% probability).

The title compound was synthesized by hydrothermal methods employing guanidine as the structure-directing agent. In a typical synthesis, 1.53 mL of phosphoric acid was first added to 1.8 g of guanidinium carbonate to remove CO₂, and then 2.0671 g of tin oxalate, 6 mL of water, and 4 mL of ethylene glycol (EG) were mixed to give a mixture in the ratio 1.0:2.0:2.0:33.0:6.0 SnC₂O₄: H₃PO₄:[CN₃H₆]:H₂O:EG. This was stirred until it became homogeneous, and the final mixture was sealed in a PTFE-lined stainless steel autoclave (Parr) and heated at 150 °C for 2 days under autogenous pressure. The resulting product, which contained a mixture of powder and colorless hexagonal needle crystals, was filtered and washed thoroughly with deionized water. The powder X-ray diffraction pattern indicated that the product was a new material. Thermogravimetric analysis (TGA) under a static air atmosphere in the range from room temperature up to 800 °C showed weight loss of 8.6% (calcd 8.3%) at around 400 °C, corresponding to the loss of the amine molecule. The chemical analysis gave the following results: Sn/P = 1.29% (calcd = 1.33%), C = 1.89% (calcd = 1.46%), H = 1.03% (calcd = 0.70%), N = 4.8% (calcd = 5.1%). The powder X-ray diffraction pattern of the decomposed sample at 400 °C shows the presence of $Sn_2P_2O_7$ (broad peaks).

A suitable single crystal was carefully selected under a polarizing microscope, and X-ray data were collected on a Siemens SMART CCD diffractometer equipped with a normal focus, 2.4 kW sealed tube X-ray source (Mo K α radiation) operating at 50 kV and 40 mA. About 1.3 hemispheres of intensity data were collected in 1321 frames with ω scans (width of 0.30° and exposure time of 10 s per frame). The unit-cell constants were determined by a least-squares fit of 8192 reflections in the range $4^{\circ} < 2\theta < 50^{\circ}$. Crystal data for $[Sn_4P_3O_{12}]^{-1}$ $[CN_3H_6]^+$: tetragonal, space group P4₃ (No. 78), a =8.8881(1) Å, c = 20.6029(4) Å, V = 1627.59(4) Å³, Z =4, M = 819.76, and $\rho_{calc} = 3.345 \text{ g cm}^{-3}$. A total of 8517 reflections were collected in the range $-11 \le h \le 10$, $-11 \le k \le 11, -27 \le l \le 25$. These were merged to give 2807 unique data ($R_{merg.} = 4.4\%$). The structure

[†] University of California.

Figure 2. (a) One of the puckered sheets of six-membered (Sn₃P₃O₆) and 12-membered (Sn₆P₆O₁₂) rings in GUAN-SnPO, which lie perpendicular to [100] and [010]; tin, hatched circles; phosphorus, open circles; oxygen, not shown. (b) View of the structure down [010]; tin, large shaded circles; phosphorus, medium shaded circles; oxygen, small shaded circles. Guanidinium ions are shown as smaller balls and sticks.

was solved by direct methods using SHELXS-86¹¹ and difference Fourier syntheses. The absorption correction was based on symmetry equivalent reflections using the SADABS¹² program. Other effects such as absorption by the glass fiber were simultaneously corrected. The last cycles of refinement included atomic positions and anisotropic thermal parameters for all the non-hydrogen atoms. Final R(F) = 2.5%, $R_w(F^2) = 5.5\%$ and S = 1.188were obtained for 226 parameters and 2763 reflections with $I > 2\sigma(I)$. The final Fourier map minimum and maximum were -1.31 and 0.75 e Å⁻³. Full-matrixleast-squares structure refinement against $|F^2|$ was carried out using the SHELXTL¹³ package of programs.

Figure 3. The tin atoms are connected along *c* to show the chirality of the channels in (a) the $P4_3$ structure and (b) the *P*4₁ structure; guanidinium ions are shown as balls and sticks.

The structure of GUAN-SnPO is based upon a network of alternating trigonal pyramidal SnO₃ and tetrahedral PO₄ units, as in other 3d Sn(II) phosphates.^{8,9} The asymmetric unit is shown in Figure 1. The Sn-O distances are in the range 2.063-2.164 Å-(ave 2.104 Å) and the O–Sn–O bond angles are in the range 83.3-91.6° (ave 85.7°), typical of three-coordinated Sn in the 2+ oxidation state and in agreement with related materials.⁶⁻¹⁰ The P-O distances are in the range 1.507–1.541 Å (ave 1.528 Å) and the O–P–O angles in the range 105.6-111.8° (ave 109.5°). The framework is constructed of puckered sheets of sixmembered (Sn₃P₃O₆) and 12-membered (Sn₆P₆O₁₂) rings, which are perpendicular to [100] and [010] (Figure 2a). The sheets are stacked in an AB sequence along [100] and [010]. Charge neutrality is achieved by incorporating the planar guanidinium cations into the tortuous channel structure defined by the 12-rings (Figure 2b). The width of this channel is 8.3×6.7 Å, atom to atom; the planes of the organic cations lie perpedicular to [001]. The shortest distances between the nitrogens of the guanidinium and the oxygens of the framework are 2.997, 2.929, and 3.012 Å, respectively, for N1-O3, N2-O10, and N3–O1, confirming that there is hydrogen bonding between the amine and the host structure.

The structure of GUAN-SnPO is chiral (space group $P4_3$), even though the synthesis conditions involved an achiral SDA. It has previously been found that structures containing pyramidal selenite (SeO $_3^{2-}$) units have a strong tendancy to be acentric or chiral.¹⁴ The same trend may hold for materials containing the pseudoisoelectronic SnO₃⁴⁻ unit. Refinement of the Flack polarity parameter (0.019(26)) confirmed that the righthanded enantiomorph had been obtained in our initial structure determination (refinement in P41 yielded a Flack polarity parameter of 1.005(38)). By visual inspection of the sample morphology, we were able to select a crystal of the left-handed enantiomorph for a second structure determination. The structure was refined in space group $P4_1$, yielding an *R* factor of 3.2% and a Flack polarity parameter of 0.069(62) (refinement in $P4_3$ yielded a value of 0.919(67)). In all other respects, the structures of the two enatiomorphs are identical, as expected. The chirality of the channels in

⁽¹¹⁾ Sheldrick, G. M. SHELXS-86 Program for Crystal Structure Determination; University of Gottingen: Göttingen, 1986; Acta Crystallogr. 1990, A35, 467.

⁽¹²⁾ Sheldrick, G. M. SADABS User Guide; University of Gottingen: Göttingen, 1995.

 ⁽¹³⁾ Sheldrick, G. M. SHELXL-93, A program for crystal structure determination; University of Göttingen: Göttingen, 1993.
 (14) Morris, R. E.; Hriljac, J. A.; Cheetham, A. K. Acta Crystallogr.

^{1990,} C46, 2013.

the two enantiomorphs can clearly be seen when the tin atoms are connected along c (Figure 3).

Acknowledgment. A.K.C. thanks the MRSEC program of the U.S. National Science Foundation under the award no. DMR-9632716 and Unilever plc for providing a grant in support of our UCSB-JNCASR joint program.

Supporting Information Available: X-ray crystallography data for GUAN–SnPO (5 pages). Ordering information is given on any current masthead page.

CM980559M